
A Framework for
Multimedia Communication in a

General-Purpose Distributed System

[)avid Anderson
Robert Wahbe

Report No. UCB/CSD 89/498
March 31, 1989

Computer Science Division (EECS)
University of California
Berkeley, CA 94720

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
31 MAR 1989 2. REPORT TYPE

3. DATES COVERED
 00-00-1989 to 00-00-1989

4. TITLE AND SUBTITLE
A Framework for Multimedia Communication in a General-Purpose
Distributed System

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
University of California at Berkeley,Department of Electrical
Engineering and Computer Sciences,Berkeley,CA,94720

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Next-generation distributed computer systems will support network communication of digital multimedia
(audio and video) traffic. Evolving hardware technology will provide the necessary performance. However,
difficult design issues arise in the software structure of such a system. We consider three related issues: 1)
What basic IPC abstractions can accommodate the likely range of traffic types? 2) How can IPC functions
such as security and flow control be optimally assigned to system layers? 3) How can host resources such as
CPU time and memory be optimally allocated? In response to these questions, we have defined channels,
an IPC abstraction with security, reliability, and performance parameters. The channel abstraction
underpins the network communication architecture of DASH, an experimental distributed system. In
DASH, IPC functions are dynamically assigned to the layer in which they can be performed most
efficiently, and the allocation policies for kernel resources are dictated by the performance needs of IPC.
All IPC (local and request/reply as well as multimedia) is handled in a single framework.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

19

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

A FRAMEWORK FOR MUL TIMED lA COMMUNICATION
IN A GENERAL-PURPOSE DISTRIBUTED SYSTEM

David P. Anderson
Robert Wahbe

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, CA 94720

March 31, 1989

ABSTRACf

Next-generation distributed computer systems will support network communication
of digital multimedia (audio and video) traffic. Evolving hardware technology will pro

vide the necessary performance. However, difficult design issues arise in the software

structure of such a system. We consider three related issues: 1) What basic IPC abstrac

tions can accommodate the likely range of traffic types? 2) How can IPC functions such

as security and flow control be optimally assigned to system layers? 3) How can host

resources such as CPU time and memory be optimally allocated?

In response to these questions, we have defined channels, an IPC abstraction with

security, reliability, and performance parameters. The channel abstraction underpins the

network communication architecture of DASH, an experimental distributed system. In

DASH, IPC functions are dynamically assigned to the layer in which they can be per

formed most efficiently, and the allocation policies for kernel resources are dictated by

the performance needs of IPC. All IPC (local and request/reply as well as multimedia) is

handled in a single framework.

Sponsored by the California MICRO program, AT&T Bell Laboratories, Digital Equipment Corporation, IBM

Corporation, Olivetti S.pA, and the Defense Advanced Research Projects Agency (DoD) Arpa Order No. 4871. Moni

tored by Naval Electronic Systems Command under Contract No. N00039-84-C-0089.

1

1. INTRODUCTION

There is growing interest in incorporating multimedia 1 user interfaces and commun
ication into general-purpose distributed operating systems [14, 24-27]. Such a system
could support mixed-media documents and conferencing, and might replace telephones,
answering machines, and CD players. Wide-area networks such as Broadband ISDN
(BISON) [8] may eventually allow these systems to be extended to a national or global
scale. They could then subsume and integrate many existing communication media
(mail, FAX, news and entertainment distribution) and support new applications such as
interactive video.

DASH [2] is an experimental distributed system that combines multimedia com
munication with traditional distributed system functions such as program execution and
RPC-based service access. The DASH design allows the integration of multimedia com
munication, computation, and storage. For example, digital audio streams can be
directed among audio 1/0 devices, disk files and processes in much the same way that
byte streams are used in UNIX.

The DASH operating system kernel provides a uniform abstract interface to net
works, manages and multiplexes network communication, and uses software to enhance
the capabilities of network hardware. In designing the communication facilities of
DASH, we encountered several basic issues:

• What are the ''right'' IPC abstractions for multimedia and other traffic? A frame
work is needed in which 1) client needs can be expressed; 2) network capabilities
can be expressed, and 3) these needs and capabilities can be compared meaning
fully.

• How should the IPC system be layered, and how should functions such as error
detection, security and flow control be assigned to the different layers?

• How can the operating system best allocate its local resources (CPU time, network
queueing, and buffer space) to support real-time IPC? This issue is crucial because
high-speed networks will probably shift performance bottlenecks into hosts.

To address these issues, we first developed an IPC abstraction called channels. The
channel abstraction is used at several layers in DASH (see Figure 1a). Channels have
security, reliability and performance parameters that are exchanged between layers.
Using these parameters, the DASH kernel intelligently allocates local resources and
assigns IPC functions to the layer that can do them most efficiently. Many software
functions are consolidated in a subtransport layer that exports the characteristics of dif
ferent network hardware, yet provides a uniform interface.

In contrast to DASH, the DARPA Internet model (shown in Figure 1b) provides an
Internetwork Protocol (IP) layer with a datagram interface. The abstraction provided by
IP is the lowest common denominator of the services provided by the component net
works, and their other characteristics (such as security and performance) are hidden.
Using the IP datagram service, transport protocols provide abstractions such as reliable
byte streams and RPC [5, 18]. This architecture facilitates interconnection, but it does
not allow any of the characteristics of the networks to be exported to higher layers. As a

1 We use the term multimedia to refer primarily to digital audio and video.

2

applications applications

subtransport layer Internet Protocol (IP)

a) The DASH model b) The Internet model

unparameterized abstraction

!===========! c::::J @::::::::::! various parameterized abstractions

''""''''''""'"'.,.,,...,, .. '•·=·:-"...,'"'''· ·.' .,.-·-· ==· · · -..... , '~·-: I unified parameterized abstraction

Figure 1: IPC abstractions in a) the DARPA Internet architecture and b) the DASH architecture.

result, it cannot support general real-time communication and it is inflexible with respect
to placement of IPC functions.

The paper is organized as follows: Section 2 summarizes the performance require
ments of multimedia traffic, surveys relevant hardware technology, and discusses the role
of operating systems in multimedia communication. Sections 3 and 4 describe the chan
nel abstraction and its use in the DASH communication architecture. The use of channel
parameters in assigning IPC functions and allocating local resources is discussed in Sec
tions 5 and 6, and Section 7 gives conclusions.

2. ARCHITECTURES, REQUIREMENTS AND RESOURCES

2.1. The Role of Operating Systems in Multimedia Communication

Many hardware/software architectures for multimedia communication are possible.
At one extreme, voice and ''data'' traffic share a physical network, but have no other
interaction (Figure 2a). The Xerox Etherphone system [25] provides a partially
integrated facility for voice communication and storage (Figure 2b). Connection estab
lishment is controlled through a workstation-based user interface, but voice data is not
handled by the workstation. The eLAL multimedia laboratory [14], uses an architecture
that is similar except that a separate physical network is used. Analog video signals are

voice
traffic

a)

data
traffic

3

connection
mana gemelli

voice
traffic

b)

data
traffic

Figure 2: Hardware architectures for multimedia communication.

routed through a computer-controlled crossbar switch.

c)

combined
real-time
traffic

Integration and uniformity encourage synergy among system functions. In the
UNIX operating system [19], for example, all 1/0 traffic (network, disk, terminal, and
graphics output) passes through the main memory of the host, under the control of the
operating system. Exploiting this uniformity, UNIX defines a standard programming
interface and command syntax for communication and 1/0, allowing processes to be con
veniently connected to 1/0 devices or to other processes An analogous uniformity in mul
timedia communication (Figure 2c) would 1) increase the portability and generality of
multimedia software, 2) support applications such as video hypertext [7] that use several
media interactively, and 3) allow multiple physical networks (e.g., FDDI and BISDN) to
be used transparently.

Is integrated multimedia communication technologically feasible? To address this
question, we must first survey the performance needed by multimedia applications and
the performance offered by evolvin'g hardware technology.

2.2. Performance Requirements of Multimedia Applications

In its simplest form, multimedia traffic is sent uncompressed between 1/0 devices
(converters) that have limited buffering. Data is sent in equal-sized units at equal time
intervals. To avoid starvation and overrun, a channel with approximately constant delay
is needed. The required throughput varies: 64 Kbps for voice-quality audio, 1.4 Mbps for
CO-quality stereo audio, and anywhere from 1.6 Mbps to 1 Gbps or more for video,
depending on the resolution and frame rate. The maximum acceptable delay depends on
the application. In voice conversations a round-trip delay of more than 50 milliseconds
causes undesirable echo effects [15], while a delay of a second would be acceptable for
the transmission of a recorded program or message. The error rate, message loss rate,
and reordering requirements may also vary with the application. If video is being
transmitted for one-time viewing, a nonzero message loss rate (resulting in frames being
shown twice in succession) may be acceptable. The error tolerance may be lower when

4

the transmission is for archival purposes.

Other types of multimedia traffic are bursty (i.e., have a variable data rate). The
degree of burstiness may be expressed by deviation-to-average (DAR) or peak-to
average (PAR) ratios. Compression often introduces burstiness. For example, current
compression techniques allow TV -quality video to be compressed to an average of 139
Kbps to 2.7 Mbps (using different coding schemes) with DAR of 2 to 3 [16]. The bursti
ness can be reduced by dynamically varying the picture quality. Silence suppression in
typical voice conversations reduces the data rate by about 60% and introduces burstiness
[6].

The requirements of applications that generate bursty traffic vary widely. If the
receiver has limited buffering, the variance of the delay must be limited; in the extreme
case an isochronous (constant delay) channel is needed. Otherwise it may suffice to have
a bound on the delay, either in a statistical sense or as a hard deadline. For interactive
video, delay is more important than packet loss, and peak delay is more important than
average [16].

In addition to these performance and reliability requirements, multimedia traffic
may have security requirements such as authentication and/or privacy. Finally, most
"conventional" digital traffic (file access, remote login, window systems, etc.) has impli
cit real-time requirements as well. For example, a moderate amount of delay (10-100
ms) is acceptable for user interface traffic because of human perceptual limitations. The
acceptable delay and throughput for file access depends on the client; virtual memory
page-out will have much looser delay requirements than the page-in of an interactive pro
gram. In general, the requirements of conventional traffic are not as stringent as those of
multimedia traffic, but the difference is quantitative rather than qualitative.

2.3. Evolving Hardware Technology

With the advent of fiber-optic transmission media and fast switching technology,
next-generation networks will offer high data rates, and they may also offer real-time
performance guarantees. As an example, Fiber Distributed Data Interface (FDDI) is a
100 Mbps fiber-based ring network capable of supporting 500 stations on a 100 Km ring
[20]. In its enhanced (FDDI-11) mode, it provides up to 16 "isochronous channels" of
6.4 Mbps, "synchronous frames" with a small delay bound, and multiple priorities for
other packets. On a larger scale, Broadband ISDN (BISON) is an evolving international
standard for fiber-based commercial networks [8, 11]. Standard channel bandwidths of
150 Mbps and 600 Mbps have been proposed. With both FDDI and ISDN, clients must
' 'reserve'' channels in advance.

Equally importantly, the performance of host 1/0 systems is increasing as well.
Throughputs of 100 to 500 Mbps or more have been achieved or predicted for the major
hardware components: memory busses [28], network interfaces [12], and permanent
storage [17].

2.4. The Window of Scarcity

The general task of an operating system is to satisfy client needs using hardware
resources. This is impossible if the needs exceed the resources (see Figure 3). If there
are abundant resources, hardware is always fast (or capacious) enough to satisfy needs.

s

In the middle area, which we call the window of scarcity, the operating system must
require clients to reserve resources, and carefully schedule resource usage, in order to
satisfy typical client needs.

Based on the above discussion, we conjecture that the task of providing integrated
multimedia communication is in the window of scarcity, and will remain there for at least
the next 10-15 years. The demands of multimedia applications (and the scale of distri
buted systems) will increase at roughly the same rate as hardware capabilities. To satisfy
client needs, if this conjecture holds, the hardware resources of the system (local and/or
network) will have to be allocated and scheduled according to those needs.

3. CHANNELS: AN ABSTRACTION FOR REAL-TIME IPC

If a distributed system is to provide integrated multimedia communication, what
IPC abstractions should be used? If the system is to function within the window of scar
city, the IPC abstraction must be parameterized to allow the expression of client needs
and hardware capabilities. Abstractions built on datagrams (or virtual circuits) therefore
cannot suppon multimedia communication in this case.

DASH uses an IPC abstraction called a parameterized message channel, or simply a

channel [4]. A channel is simplex (unidirectional) entity2 that carries messages (untyped
byte arrays) from a sender to a receiver. The sender and receiver entities (processes or
hosts) are called clients, and the system supponing the creation and use of channels is the

requirements
(per,(o~nce,scale)

network
file access
remote
login

insufficient
resources

1980

scarce
resources

1990

abundant
resources

Figure 3: The window of scarcity.

2000
hardware
resources
in year X

2 Channels are simplex because real-time traffic is often asymmetrical, as when audio data is downloaded from a

data server. Asymmetrical channels (600 Mbps towards the "customer", 150 Mbps the other way) have been pro

posed for BISDN [11].

6

provider. A client of one level may be a provider to a higher level. A channel C has a

set of parameters Pc describing its security, workload, performance, reliability and error
characteristics. The parameters are fixed for the life of the channel.

To relate needs and resources, we need a basis for comparing parameter sets. For

this purpose, a relation ~ is defined on parameter sets. If P 1 ~P 2 holds then P 2 is at least
as good as P 1; i.e., P 2 is acceptable to a client whenever P 1 is acceptable. In cases where
billing is done, P 1 must be no more expensive than P 2• ~ is a partial order; two parameter

sets may be incomparable under~.

A channel creation request includes parameter sets P min• P ,.,,.,, and P max· P min is the
minimal needs of the client, and p max is the maximum he is willing to pay for. The actual
parameter set p of the resulting channel must satisfy p min~ p ~ p max; the request is rejected

if this is impossible. The P ,.,,., parameters are a "hint" to the channel provider, which

tries to match them as closely as possible3. The creator of a channel (which may be

either the sender or the receiver) is ''billed" for the channel, if such a notion exists.

A channel fails when one of the clients' hosts crashes, or when a failure or resource
scarcity in the network makes it impossible to continue providing the channel. When a

failure occurs no further messages are delivered, and the surviving channel clients are
notified of the failure.

3.1. Channel Parameters

A given parameter is either a provider parameter or a client parameter, depending

on who is responsible for enforcing it. When a client violates a restriction, the provider
might 1) notify the client; 2) temporarily suspend the offending send operation; 3) drop

messages; 4) cancel some or all of the channel guarantees; 5) close the channel. The

choice is itself a parameter, as is the choice of whether the provider is responsible for
notifying the client if it fails to satisfy a guarantee.

What should be the set of channel parameters? Our criteria, roughly speaking, are

that a property should be a parameter if: 1) some clients need it, but not all; 2) some net

works provide it, but not all; 3) it is potentially expensive to provide it in software. We

have chosen the following basic channel parameters:

parameter units responsibility

maximum message size bytes client
authentication Boolean provider
privacy Boolean provider
sequenced Boolean provider
acknowledgements Boolean provider
bit error rate probability provider

The ~ relation involves these parameters in the obvious way. P 1 ~P 2 only if the

parameters of P 1 are at least as "strong" as those of P 2 (e.g., P 2 must sequenced if P 1 is).

3 The design could be extended to allow multiple minimum and maximum parameter sets; the actual channel

would be required to lie between some pair of minimum and maximum parameter sets.

7

There are many possible ways to parameterize the performance and workload of a

communication channel. We chose a set of parameters that can express the needs of

most types of multimedia traffic, and can express the facilities of some existing and pro
posed networks.

_parameter units responsibility

delay bound seconds provider
delay mean bound seconds provider
delay variance bound seconds provider
average workload bits/second client
peak workload bits/second client
average loss rate probability provider
peak loss rate probability provider
channel class (see below)

The loss rates are the probability that a message is not delivered. (This loss may be due

to buffer overrun or to checksum errors). The meaning of a channel's performance

parameters depend on its class:

Guaranteed: the provider reserves all resources necessary to guarantee the perfor

mance parameters. A channel creation request is not granted if there are insufficient
resources.

Best-available: like guaranteed, except the provider does not control all the

resources used for the channel. As an example, hosts could provide a channel of

this class over an Ethernet. The Ethernet media access protocol has no real-time
guarantees [22], but the hosts can use the channel parameters to schedule the
resources they do control: queueing priority and buffer space.

Best-effort: requests are always granted. The provider does not necessarily reserve

resources (hosts and networks determine their own policies for dealing with starva

tion of best-effort channels). Delay bound parameters are used for scheduling

(CPU, network queueing) based on message delivery deadlines (see Section 6).

A complete definition of ~ is beyond the scope of this paper. The ~ relation can

only hold between classes in the following order:

best-effort~ best-available ~guaranteed

Thus, a best-effort channel can never be substituted for a guaranteed channel, regardless

of their parameters.

3.2. Examples of Channel Parameter Usage

Using the channel parameters listed above, one can express the multimedia perfor

mance requirements and resources discussed in Section 2 (for example, a periodic iso

chronous channel is sequenced, has zero delay variance, and has equal peak and average

workloads). Using the best-available and best-effort classes, one can express the charac

teristics of channels in nondeterministic networks. The best-effort class can be used to

express the needs of clients whose workload is unpredictable, that do not have rigid

requirements, and for which resources should not be reserved.

8

Channel parameters are useful for non-multimedia traffic as well. For example, a

request/reply protocol [23] can use channel parameters to assign appropriate message

delay bounds (initial requests and replies have tighter bounds than retransmissions and

acknowledgements) and to obtain appropriate retransmission intervals. It is not neces
sary to create a new channel for each operation; for example, the DASH RPC facility

uses a set of long-lived ST channels. Stream protocols can potentially use channels to

achieve greater performance or economy. A stream protocol for bulk data transfer [9]

should use a high capacity, high delay channel for data. Acknowledgement and

retransmission strategies can be simplified since round-trip delays may be estimated from

channel parameters.

We will describe in later sections how an operating system can use channel parame

ters to intelligently assign IPC functions and schedule resources. In addition, the channel

architecture may simplify the design of high-speed wide-area networks. Because work

load information is available to the network, new approaches to routing, queueing, and

congestion control may be possible [10].

4. THE DASH NETWORK COMMUNICATION ARCHITECTURE

The channel abstraction provides a basis for 1) optimal assignment of IPC functions

to layers, and 2) optimal allocation of local resources. This is illustrated by the design of

DASH, described in this section. The DASH network communication architecture [3] is

based on channels. It consists of several layers (see Figure 4).

functions
(ifneelkd)

mechanisms
(if needed)

channel, request/reply interfaces retransmission

:=~----------\.--'---i'---'-+---~----==~1----------------------==::: :\
channel interface security encryption

integrity checksumming

subtransport increase message size fragmentation
layer reduced channel establishment channel multiplexing

network
layer

channel interfaces

DD

failure detection channel caching
fast acknowledgements

hardware encapsulation physical security
link-level acks
link-level security

Figure 4: The DASH Communication Architecture.

9

The network layer encapsulates network-specific hardware and protocols. A
DASH network is a logical entity (LAN, MAN, WAN, or internetwork) that provides
channels. Each network to which a DASH host is connected is represented in its kernel
by a software module exporting a standard interface offering host-to-host network chan
nels. These modules encapsulate network-specific protocols for channel creation, dele
tion, and data transmission, as well as tasks such as routing and network management.
They export flags (used by the subtransport layer to select security mechanisms) indicat
ing whether hosts on the network are trusted, and whether the network is a physical
broadcast network. A network supplies only those channel classes and parameters that it
can support in hardware. For example, it provides security only if it is physically secure
or does link -level encryption.

The subtransport layer (ST) manages, abstracts, and enhances the resources pro
vided by the network layer. The ST provides ST channels. It uses software techniques to
satisfy the client's error rate and security requirements, and to increase efficiency (see
Section 4.1).

Clients (kernel and user processes) may directly create and access ST channels. If
needed, protocols in the transport layer may be added to provide flow control and/or
reliability. DASH RPC is a standard transport protocol. It provides a request/reply inter
face, and uses a set of ST channels whose parameters are chosen to optimize the protocol
(see Section 3.2).

At higher levels, the DASH communication architecture includes 1) a service
access mechanism providing a uniform interface to network services and other logical
resources, and 2) a global naming system used to name lorig-lived entities such as hosts,
services, and owners. The naming system is also a public key server (underpinning the
ST's security mechanisms) and maps host names to network addresses.

The above layers involve network communication. Channels can also be used for
communication between processes on a single host, in which case the role of the channel
is to establish process scheduling deadlines.

4.1. The Functions of the Subtransport Layer

The ST layer plays three important roles in the DASH architecture. First, it pro
vides a single standard interface to networks, even if a host is connected to multiple dis
similar networks. In this sense it is analogous to the IP layer of the Internet architecture.

Second, the ST acts as resource manager for network communication, matching
client needs to network resources. The ST multiplexes ST channels onto network chan
nels, and caches network channels (retaining a network channel even while it is not being
used by any ST channel). This can reduce overhead and delay compared to a policy of
creating a network channel for each ST channel, assuming that 1) during a short time
period a host will tend to communicate repeatedly with a small set of remote hosts; 2) it
is relatively costly to create network channels. The parameters of an ST channel may be
different than those of the network channel on which it is multiplexed. The ST uses the $;

relation in making multiplexing decisions; other policies (such as how much excess capa
city to allocate when a network channel is created, and how long to maintain idle net
channels) are host-dependent.

10

Third, the ST uses software techniques to "enhance" network channels, bridging
the gap between client needs and network facilities. The channel-enhancement functions
include the following (see [3] for a complete list):

Security and Reliability: If an ST channel has stricter security or reliability
requirements than its network channel, the ST uses the most efficient method
(encryption, cryptographic checksumming, checksumming, or encrypted trailer) to
bridge the gap. These methods provide host-to-host security. The ST also allows
clients to authenticate individual security principals. It maintains a "cache" of
principals who have been authenticated to or from each host with which it has com
municated.

Increased Maximum Message Size: The ST does fragmentation and reassembly,
reducing the number of high-level messages and hence protocol processing and
scheduling overhead. The maximum message size of an ST channel may be larger
than that of its network channel, but not so large that the ST is forced to use
retransmission or flow-control mechanisms to satisfy other requirements.

Client process parallelism and multiplexing: The ST's CPU-intensive tasks
(checksumming and encryption) are done in parallel on multiprocessors. The ST
manages this parallelism, using either client processes or its own "worker"
processes. The ST also allows the sender to specify a process to awaken on mes
sage receipt (this is used for RPC reply messages, which are carried on a s;:1gle ST
channel but are directed to one of many client process).

In typical systems, the functions of ST are done at the transport or network levels.

By centralizing the functions in the ST, the DASH architecture allows some of them to

be done more efficiently. For example, a single secure channel between hosts can be
maintained more efficiently than one per operation or session [1]. Furthermore, the ker
nel is smaller and simpler because functions are consolidated in a single module, rather

than implemented separately in multiple transport or network modules.

Mechanisms for reliability and flow control are omitted from the ST because there

are many tradeoffs and design decisions in these mechanisms, and we did not want to
hardwire them into the ST.

5. ASSIGNMENT OF IPC FUNCTIONS

The DASH architecture gives the system two important degrees of freedom in sup

porting communication. First, the ST can choose the best network to use for each chan

nel. For example, suppose a DASH host is connected to a MAN that is part of an inter

network and supplies its own native protocols as well. The native protocols provides a

greater range of channel parameters than those of the internetwork. The host would view

these as separate networks, represented by a MAN module and an internetwork module.

The ST would use the MAN in preference to the internetwork for channels to hosts on
the MAN.

Second, the DASH architecture allows communication functions such as flow con

trol, error recovery, and security to be handled optimally, according to the following

principles:

• If the function is not needed, it is not performed at all.

11

• If the function is needed, it is assigned to the layer that can do it most efficiently.

For example, suppose a client requires data privacy. It requests an ST channel with
the private attribute. ST creates a new ST channel, multiplexing it onto a network chan
nel. Several scenarios are possible:

(1) If the network is physically secure, no data encryption is done at any level.

(2) If the network has link-level encryption hardware, ST learns this from the net
work channel parameters, and does no data encryption.

(3) Otherwise privacy is provided by the ST using data encryption.

In any case, the optimal mechanism is used. If a client does not require privacy, no
mechanism is used (which is again optimal).

Next, consider data integrity (bit error rate). In some architectures this is provided
by checksumming in transport protocols. However, multimedia applications may tolerate
errors, and in any case fiber optic networks may offer bit error rates so low that check
summing is not needed [21]. If encryption is being done at some level (see above)
checksumming is not needed since encryption also provide error detection. Again, the
DASH architecture allows the optimal choice to be made.

Finally, consider flow control (i.e., workload enforcement). This is the responsibil
ity of the channel client. Depending on the channel parameters and the speeds of the data
source and sink, a flow control mechanism may be unnecessary. If so, transport proto
cols can be simplified and made more efficient (or eliminated altogether).

6. LOCAL RESOURCE ALLOCATION

End-to-end network IPC involves resources local to the sending and receiving hosts
(buffer space, CPU time, 1/0 bus bandwidth, and so on). With increasing network
speeds, these resources will often be the performance bottleneck, so their allocation
determines the performance available to users. In this section we sketch the resource
allocation policies of the DASH kernel.

When a channel is created in DASH, its mean delay is divided among its various
stages. (In the case of an ST channel, these stages include ST send processing, network
queueing, network transmission, ST receive processing, and receiver process scheduling
delay.) When a message is sent on a channel, there is a deadline by which it must be han
dled by the next stage (i.e., processed by a protocol, sent on a lower-level channel, or
transmitted on a network medium). To a first approximation, this deadline is the current

real time plus the delay allocated to the next stage4. These deadlines are used to priori
tize resource usage (i.e., the order in which queued messages are transmitted, and the
order in which processes are executed).

This strategy is an extension of deadline-based process scheduling [13], and shares
its property of meeting deadlines if possible. However, the existence of multiple channel
classes adds complexity. Guaranteed and best-effort messages may have intermixed
deadlines, but best-effort traffic must not interfere with guaranteed traffic. DASH
addresses this problem by using channel class to prioritize traffic, and using deadlines to

4 The deadline could also reflect the amount by which the message is ahead of, or behind, schedule.

12

prioritize traffic within a class. For example, the DASH network module for Ethernet

supports best-available and best-effort channels. The module maintains separate queues

for outgoing packets of each class. Since the size and deadline of each packet are known,

a "maximum start time" can be computed. A best-effort packet is transmitted only if it

will finish before the earliest deterministic packet maximum start time (see Figure 5).

The DASH process scheduler also uses a hybrid priority/deadline mechanism.

Processes involved in IPC are labeled by their channel class, and are assigned deadlines

based on channel parameters. The scheduler maintains two deadline-sorted queues of

runnable processes, one for best-effort and one for guaranteed and best-available. The

scheduling policy is to run the process with the earliest deadline, except if the current

real time exceeds the maximum start time of a higher-priority process. In some cases it

is necessary to reserve a fraction of the sender and/or receiver host's total CPU time for a

channel when it is created.

To demonstrate the effectiveness of these policies, we set up an experiment using

the DASH kernel running on Sun 3/50 workstations connected by a dedicated 10 Mbps

Ethernet. A single guaranteed channel with a delay bound of 10 ms and a periodic work

load (a 1 Kbyte message every 10 ms) competes with random (Poisson) traffic on a best

effort channel. This is representative of a combination of high-quality audio channel and

other traffic (file access, for example). As shown in Figure 6, the delay of the guaranteed

channel remains below 10 ms, while the delay of the best-effort channel becomes infinite

when its workload exceeds the remaining available throughput. The bottleneck resource

in this case was CPU time. With faster CPUs, the network queueing policy would be

exercised instead.

maximum start time

guaranteed packets ~ 02

best-effort packets Bl B2

transmission order Bl II 01 II 02 II B2

time
current time

Figure 5: The queueing policy for guaranteed and best-effort packets. D2 is transmitted

before B2 even though its deadline is later.

delay (milliseconds)

i I
i I , i ,

20 -----------+--r-------i------------i-----------+------------
1 I i i i
i I i i

10 __________) ___________ ._ : _: ------------
/ : '

/ ' '

0.5 1 1.5 2

best-effort load (Mbps)

13

throughput (Mbps)

1 -----------+-----------i------------f-----------+------------. ' . . . '
' '

0.5 -----------~.L.:::_:._j. __ :_=-=-~--~-::-._:+------------
...... : : : :

...... . . ' .
/ / ! i 1 ~

0 : : : :
0 0.5 1 1.5 2

best effort

guaranteed

best-effort load (Mbps)

Figure 6: A demonstration of the DASH queueing mechanisms.

7. CONCLUSION

Successive generations of operating systems have been characterized by their IPC
paradigms: byte streams, RPC, object invocation, and so on. The next generation of dis
tributed operating system must support multimedia IPC, allowing application programs
to direct streams of digital audio and video data between 1/0 devices, processes, per
manent storage, and remote hosts. We have proposed channels as a standard IPC
abstraction for such systems. Channels allow the client and the provider to negotiate per
formance, workload, reliability and security parameters. The abstraction provides a flexi
ble parameterization, so that new network types, new 1/0 technologies, and new applica
tions can be integrated easily.

We have also described the channel-based DASH communication architecture.
Channel parameters in three ways in the DASH architecture: 1) they dictate how user
requested channels (ST channels) can be multiplexed onto network channels. 2) they
dictate whether IPC functions (security, data integrity, flow control) are needed, and if so
they determine the optimal layer in which to perform the function; 3) they allow local
resources such as network bandwidth and CPU time to be scheduled intelligently.

The design described in this paper is still a rough framework. Many issues remain:
1) different performance parameters may be needed; 2) the restriction that parameters are
fixed during the life of the channel may not be reasonable in the presence of network
congestion and changing buffer sizes; 3) we have neglected bounds on setup time of
channels and on the expected lifetime of channels; 4) multicast is absent from the design,
and it is likely that some multimedia applications (e.g., broadcasts of TV programs) will
require multicast services at a low level; 5) the design of programmer and user interfaces
based on channels remains to be investigated.

14

REFERENCES

1. D.P. Anderson and P. V. Rangan, "A Basis for Secure Communication in Large
Distributed Systems", IEEE Symposiwn on Security and Privacy, Apr. 1987.

2. D. P. Anderson and D. Ferrari, "The DASH Project: An Overview", Technical
Report No. UCB/CSD 88/405, Computer Science Div., EECS Dept., Univ. of
California at Berkeley, Feb. 1988.

3. D. P. Anderson and R. Wahbe, "The DASH Network Communication
Architecture", Technical Report No. UCB/CSD 88/462, Computer Science Div.,
EECS Dept., Univ. of California at Berkeley, Nov. 1988.

4. D.P. Anderson, "A Software Architecture for Network Communication", Proc. of
the 8th International Conference on Distributed Computing Systems, San Jose,
California, June 1988.

5. A. Birrell and B. Nelson, "Implementing Remote Procedure Calls", ACM Trans.
Computer Systems 2, 1 (Feb. 1984), 39-59.

6. P. T. Brady, "A Statistical Analysis of On-Off Patterns in Sixteen Conversations",
Bell System Technical Journal47 (Jan. 1968).

7. S. Brand, The Media Lab, Viking, New York, 1987.

8. W. R. Byrne, T. A. Kilm, B. L. Nelson and M. D. Soneru, "Broadband ISDN
Technology and Architecture", IEEE Network, Jan. 1989, 23-28.

9. D. D. Clark, M. L. Lambert and L. Zhang, "NETBLT: A High Throughput
Transport Protocol", Proc. of ACM SIGCOMM 87, Stowe, Vermont, Aug. 1987,
353-359.

10. D. Ferrari, "Guaranteeing Performance for Real-Time Communications in Wide
Area Networks", Technical Report No. UCB/CSD 89/485, Jan. 1989.

11. R. Handel, "Evolution of ISDN Towards Broadband ISDN", IEEE Network, Jan.
1989,7-13.

12. H. Kanakia and D. R. Cheriton, "The VMP Network Adapter Board (NAB):
High-Performance Network Communication for Multiprocessors", ACM
SIGCOMM 88, Aug. 1988, 175-187.

13. C. L. Liu and J. W. Layland, "Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment", J. ACM 20, 1 (1973), 47-61.

14. L. F. Ludwig and D. F. Dunn, "Laboratory for Emulation and Study of Integrated
and Coordinated Media Communication", Proc. of ACM SIGCOMM 87, Stowe,
Vermont, Aug. 1987,283-291.

15. R. H. Moffett, "Echo and Delay Problems in Some Digital Communication
Systems", IEEE Communications Magazine 25, 8, 41-47.

16. N. Ohta, M. Nomura and T. Fujii, "Variable Rate Video Encoding Using Motion
Compensated DCf for Asynchronous Transfer Mode Networks", IEEE
International Conference on Communications, 1988.

17. J. Ousterhout and F. Douglis, "Beating the 1/0 Bottleneck: A Case for Log
Structured File Systems", Operating System Review 23, 1 (Jan. 1989), 11-28.

15

18. J. Postel, "Transmission Control Protocol", DARPA Internet RFC 793, Sep. 1981.

19. D. M. Ritchie and K. Thompson, "The UNIX Time-Sharing System", Comm. of

the ACM 17, 7 (July 1974), 365-375.

20. F. E. Ross, "FDDI- A Tutorial", IEEE Communications Magazine, May 1986,

10-15.

21. S. Shimada, K. Nakagawa and I. Tak:eshi, "Gigabit/s Optical Fiber Transmission

Systems- Today and Tomorrow", IEEE Int. Conf. on Comm., June 1986, 1538-

1542.

22. J. F. Shoch and J. A. Hupp, "Measured Performance of an Ethernet Local

Network", Comm. ofthe ACM 23, 12 (Dec. 1980), 711-721.

23. A. Spector, "Implementing Remote Operations Efficiently on a Local Network",

Comm. of the ACM 25,4 (Apr. 1982), 246-260.

24. T. Suzuki, H. Taniguchi and H. Tak:ada, "A Real-Time Electronic Conferencing

System Based on Distributed UNIX", Proceedings of the 1986 Summer USENIX

Conference, Atlanta, Georgia, June 9-13, 1986, 189-199.

25. D. B. Terry and D. C. Swinehart, "Managing Stored Voice in the Etherphone

System", ACM Trans. Computer Systems 6, 1 (Feb. 1988), 3-27.

